Journal of Organometallic Chemistry. i74 (1979) 89-108
© Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

IRON AND RUTHENIUM CARBONYLS OF 6,7-DIMETHYLENE-exo-3OXATRICYCLO[3.2.1.0 $0^{2 .+}$]OCTANE. PROTIC ACID ADDITIONS TO AN EPOXIDE RING HOMOCONJUGATED TO A η^{4}-(DIFNE)Fe(CO), FUNCTION. CRYSTAL STRUCTURES OF $\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right) \mathrm{Fe}(\mathrm{CO})_{3}$ AND $\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}\right) \mathrm{Fe}(\mathrm{CO})_{3}$

JACQUES WENGER, NGUYEN HAI THUY, TRISTANO BOSCHI *, RAYMOND ROULET **,
Institut de Chimic .Minérale et analytique de l'Université, Place du Chāteau 3, I005 Lausanne (Switzerland)

ANDRE CHOLLET, PIERRE VOGEL **,
Institut de chimie organique, rue de la Barre 2, Lausanne (Switzerland)
ALAN A. PINKERTON and DIETER SCHWARZENBACH
Instïtut de cristallographie, Bātiment des sciences physiques, Dorigň., Lausanne (Switzerland)
(Received February 26th, 1979)

Summary

The reaction of the epoxydiene 6,7-dimethylene-exo-3-oxatricyclo[3.2.1. $0^{2,+}$] octane (I) with iron and ruthenium carbonyls in various solvents yields the $\left(\eta^{+}-1,3\right.$-diene) $\mathrm{M}(\mathrm{CO})_{3}$ exo isomers ($\mathrm{II}, \mathrm{M}=\mathrm{Fe} ; \mathrm{IV}, \mathrm{M}=\mathrm{Ru}$). The endo$\mathrm{Fe}(\mathrm{CO})_{3}$ isomer (III) was obtained only in small yield from the reaction of I with $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ or $\mathrm{Fe}(\mathrm{CO})_{5}$ in n-pentane. The exo configuration of II was ascertained by an X-ray crystal structure determination. It reacts cleanly and rapidly with HCl in ether giving the exo-2-chloro-5,6-dimethylene-syn-7-norbornanol-endo-iron tricarbonyl complex (V), while the endo isomer III does not react to any significant extent under the same conditions. A simple Wagner-Meerwein rearrangement can explain the formation of V from II +HCl , although participation of the (diene) $\mathrm{Fe}(\mathrm{CO})_{3}$ moiety cannot be excluded. When treated with $\mathrm{HSO}_{3} \mathrm{~F} / \mathrm{SO}_{2} \mathrm{ClF} / \mathrm{CD}_{2} \mathrm{Cl}_{2}$, II furnished a stable cationic complex whose ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra suggest delocalisation of the homoconjugated positive charge by the (diene) $\mathrm{Fe}(\mathrm{CO})_{3}$ function. Quenching of the cation with methanol yielded the exo-2-methoxy-5,6-dimethylene-syn-7-norbornanol-endo-iron tricarbonyl complex (X) whose structure was established by single crystal X-ray diffraction.

[^0]
Introduction

Over the past several years the chemistry of dieneiron tricarbonyl complexes has received considerable attention and has proved to be useful in organic synthesis $[1,2]$. We have been interested in the effects on the physical and chemical properties of an organic function homoconjugated to a coordinated ligand [3]. We report some results of acid additions to an epoxide ring homoconjugated to a (diene) $\mathrm{Fe}(\mathrm{CO})_{3}$ function held in a rigid geometry by the bicyclo[2.2.1] heptane skeleton. We will demonstrate that the proton promoted oxiran opening in these systems leads to a stereospecific addition-rearangement reation only when the $\mathrm{Fe}(\mathrm{CO})_{3}$ group is in the exo position, the endo isomer being unreactive under the same conditions.

The high degree of stabilisation of a carbenium ion a to an organometallic substituent has been recognized for some time $[4]$. Little is known, however, about the effect of an organometallic substituent on the stability of a β-carbenium ion. Depending upon the geometry of the system investigated, an arenechromium tricarbonyl group has been found to accelerate $[5,6]$ or retard $[7] S_{x}-1$ solvolyses of π-complexed β-arylalkyl esters. The hydrolysis of 7 -norbomadienyl tosylate is drastically retarded upon complexation of the 1,4 -diene by an endo$\mathrm{Fe}(\mathrm{CO})_{3}$ group [9a], even though the iron tricarbonyl fragment is considered to be an electron-donating group [8].

Results and discussion

6,7-Dimethylene-exo-3-oxatricyclo[3.2.1.0 ${ }^{2 .+}$]octane (I) [10] yielded the exo- η^{+}-(1,3-diene)iron tricarbonyl comples II (major product) and its endo isomer III (minor product) when treated with $\mathrm{Fe}_{2}(\mathrm{CO})$, or $\mathrm{Fe}(\mathrm{CO})$-. Conditions

(I)

(II)

(III)

(IV)
were found in which only II was formed in good yield (71%). When treated with $(\operatorname{cod}) R u(C O)_{3}[11](\operatorname{cod}=1,5$-cyclooctadiene) (benzene, reflux, 15 h), I yielded the exo-Ru(CO) $)_{3}$ complex IV (15%); no trace of the endo isomer was detected. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of ligand I and its $F e$ and $R u$ complexes are reported in Table I and their IR, UV and mass spectral data in the experimental part. In the case of the iron tricarbonyl complexes of 2,3 -dimethylenenorbornane, Steiner et al. [12] distinguished between the exo and endo isomers by comparing the corresponding values of $\Delta \delta=\delta$ (ligand) $-\delta$ (complex) for the methylene bridge protons and carbon atom. They attributed the exo configuration to the complex showing higher $\Delta \delta$'s for the $H(7)_{s y n}$ and $H(7)_{a n t i}$ protons and the greater deshielding of $C(7)$. In the present case, $\Delta \delta$ for the methylene bridge proton $\mathrm{H}(82$) is smaller for II than for III (-0.28 vs. -0.45 ppm) while

TABLE 1

	I	II	III	IV
H(1), H(5)	$2.95 \mathrm{bs}{ }^{\text {b }}$	2.95 bs	2.43 m	2.84 bs
H(2). $\mathrm{H}(-4)$	3.11 bs	3.75 s	3.90 m	3.67 s
$\mathrm{H}\left(8 E^{\circ}\right)$	$0.99 \mathrm{~d}-\mathrm{m}: 10^{c}$	$1.52 \mathrm{~m} ; 10$	1.44m; 10	1.24d; 9
H(8Z)	$1.55 \mathrm{~d}-\mathrm{m}$	1.83 m	2.0 m	1.72 d
H(9F). H(10F)	$4.92 \mathrm{bs}:<0.6{ }^{\text {c }}$	1.93 di : 2.4	$1.67 \mathrm{~d}: 2.4$	1.98 d : 3.0
H(9\%), $\mathrm{H}(10 \%)$	5.25 bs	0.50 d	0.20 d	0.68d
$\mathrm{C}(1), \mathrm{C}(5)$	$45.5 \mathrm{~d}^{b}$: 148^{d} [33]	-42.4d: 153	43.9d: 150	42.4d; 157
$C(2), C(4)$	50.9d: $192{ }^{\text {d }}$	52.2d: 193	50.1d: 192	57.7d:193
C(6), C(7)	147.0 s	113.1 s	109.45	116.45
C(8)	$2 \mathrm{G.2t:138}{ }^{\text {a }}$	$35.3 \mathrm{t}: 140$	2+.0t: 139	37.Ot: 140
C(9). C(10)	103.3t: $158^{\text {d }}$	34.9t: 160	32.1 t: 159	27.6t: 159
CO	-	$210.7 \mathrm{~s}^{\circ}$	211.45	195.2 (2C)
				200.3 (1C)

${ }^{c}$ In CDCl3 at room tenmperature: ${ }^{13} \mathrm{C} \mathrm{NMR}$ spectrum width $3750 \mathrm{~Hz}, 4096$ points. b Chemical shifts in ppm, TMS as internal standard; s: singlet, bs: broad singlet, d: doublet, t: triplet, m: multiplet. $c=\bar{d}(Z E) \pm$ $0.3 \mathrm{~Hz} . d^{\mathrm{l}} J(\mathrm{CH}) \pm 2 \mathrm{~Hz} .^{〔} \mathrm{CO}$ exchange blocked at $-40^{\prime} \mathrm{C}: \delta(\mathrm{CO}) 207.1$ (2C) and $212.6 \mathrm{ppm}(1 \mathrm{C}) . f \mathrm{CO}$ exchange blocked at $-30^{\circ} \mathrm{C}: \delta(\mathrm{CO}) 209.5$ (2C) and 214.7 ppm (IC).
that for $\mathrm{C}(8)$ is greater for II than for III ($-9.1 \mathrm{vs} .+2.2 \mathrm{ppm}$) (the numbering scheme is indicated in Fig. 1). Moreover, we have found in analogous systems [13] that the comparison of $\Delta \delta$'s does not permit any distinction between the two isomers. As neither the IR nor the UV and mass spectral data are helpful, we have confirmed the exo configuration for complex II by the determination of its crystal structure (see below).

The rapid addition of gaseous HCl (ether, $0^{\circ} \mathrm{C}$) to the exo complex II generated the stereospecifically rearranged adduct $\mathrm{V}(85 \%)$. The half-time of addition at $30^{\circ} \mathrm{C}$ was $2.0 \pm 0.4 \mathrm{~min}$ (deutero-ether, molar ratio $\mathrm{HCl} / \mathrm{complex} 2 / 1$). In contrast, the endo isomer III did not react under the same conditions ($t_{1 / 2}>8000$ min) and slowly decomposed at $30^{\circ} \mathrm{C}$ with formation of the chlorohydrins VI

(豆)

(II)

(VII)

(VIII)
TABLE 2
${ }^{1}$ HAND ${ }^{13}$ C NMR SDECTRAL DATA ${ }^{4}$

	V	LIS ${ }^{\text {c }}$	VI	VIII	X	LIS ${ }^{\text {c }}$	X 1
H(1)	$3.22 \mathrm{~m}^{6}, 1.4{ }^{\text {d }}$	10	$3.03[1013)^{\circ}$	3.40 ls	3.10 ls	15	2.87bs"
H(2)	$4.07 \mathrm{~m}, 7.5{ }^{\text {c }}$	5	4.15 m	$3.80 \mathrm{~m}, 8.4{ }^{\text {c }}$	3.550118 .04	10	3.61 m
$\mathrm{H}(3 \mathrm{X})$	$2.70 \mathrm{~m}, 4.31$	12.5	2.43 m	$2.55 \mathrm{~m}, 4.36$	$2.10_{117} .4 .0{ }^{\prime}$	18	1.93 m
$\mathrm{H}(3 \mathrm{~N})$	$2.30 \mathrm{~m}, 14.0{ }^{5}$	5.6	2.43 m	$2.06 \mathrm{~mm}, 14.0 \mathrm{H}^{\prime}$	$1.93 \mathrm{dad}, 1.1 .0$ \%	9	1.83 m
H(4)	$3.14 \mathrm{ml}, 4.0^{\text {h }}$	10	2.93 m	$3.23 \mathrm{~m}, 4.0{ }^{\prime \prime}$	2.981 s	13	2.7\% 11
H(7)	$4.60 \mathrm{~m}, 1.5{ }^{i}$	21	4.15 m	-	4.4011	25	3.87 m
H(8E)	$1.91 \mathrm{~d}, 3.1^{j}$	1.6	4.921 s	2.08(1, 3, $)^{j}$	1.860, $3.0{ }^{j}$	4	4.83125
H(8\%)	0.50 c	1.3	5.2513 s	0.663	0.3991	2.5	5.18
$\mathrm{H}\left({ }^{(2)}\right.$)	$1.94 \mathrm{cl}, 3.1{ }^{j}$	2.4	5.05 bs	2.203, 3.0 ${ }^{j}$	$1.961 .3 .0)^{j}$	3	$4.9(i)$ s
H(9\%)	0.50 cl	1.8	5.35 bs	0.781	0.1811	2.5	5.30)
OH	$3.30 \mathrm{~m}, 8.3{ }^{\text {/ }}$	62		-	$4.60 \mathrm{c}, 10.0{ }^{2}$	83	11
C(1)	$53.3 d^{6}, 155$		56.0d, 150	56.0d, 157 ${ }^{\text {(}}$	48.8C, 15:2		$52.9 \mathrm{~d} .1{ }^{\prime \prime}$
C(2)	59:7d, 163		58.9d, 1633	5.4.50, 167	86.96, 15,		79.6d, 150
C(3)	41,61, 134		39.71, 137	42. $\mathrm{tchl}, 135,1.10$	38.7dd, 183, 1337		35.71. 1:33
C(4)	49.0d, 146		51.4d. 1.41	47.5d, 15\%	48.50, 150		50.919.3.18
C(5)	117.0 s		146.7s	114.4s	118.is		1.4!.0s
C(6)	112.55		145.6 s	107.7s	110.3s		1.15 .0 s
C(7)	86.7d, 16.3		78.7¢1, 157	197.8 s	88.36, 160		8.4.71, 158
C(8)	$33.7 \mathrm{t}, 162$		103.71. 158	3.1.2t, 161	33.8t, 160		102.21, 159
C(9)	34,4t, 163		105.41, 158	35.6t, 161	35.6it, 160		10.4.71, 15,
CH_{3}	210.2		--	-	57.04, 1.14		56.8\%. 1.12
CO	$210.2 \mathrm{~s}{ }^{\text {l }}$		-	211.0s ${ }^{\text {m }}$	211.3 s		---

 with V and $V I$.

Fig. 1. A perspective dew of the molecular structure of ($\left.\mathrm{C}_{9} \mathrm{HH}_{10} \mathrm{O}\right) \mathrm{Fe}(\mathrm{CO})_{3}$. (il).
and VII arising from HCl addition to the uncomplexed ligand I [10b]. DCl addition to II showed that the methylene protons $\mathrm{H}(9,10)$ of the dieneiron tricarbonyl groups of II (and V) did not exchange under the reaction conditions [14].

The structure of the HCl adduct V (a polycrystalline material) was deduced in the following way. Cerium(IV) oxidation of V yielded the known ligand VI (90%) [10b] while Collins oxidation [15] gave the complexed ketone VIII in low yield (5.5%). The endo configuration of the $\mathrm{Fe}(\mathrm{CO})_{3}$ group in VIII was then demonstrated by a partially resolved crystal structure (see below). We assume the exo \rightleftharpoons endo- $\mathrm{Fe}(\mathrm{CO})_{3}$ complex isomerisation does not occur under the conditions of the Collins oxidation because the exo complex was not detected in the reaction mixture, although it might be expected on steric grounds to be at least as stable as its endo isomer. The NMR parameters for V and VIII are given in Table 2, but cannot be relied upon when assigning the exo vs. endo configuration as in the case of complexes II and III.

The formation of the adduct V from $I I+\mathrm{HCl}$ may be explained by a simple Wagner-Meerwein rearrangement, although participation of the (diene) $\mathrm{Fe}(\mathrm{CO})_{3}$ moiety cannot be exclucled. When treated with $\mathrm{HSO}_{3} \mathrm{~F} / \mathrm{SO}_{2} \mathrm{ClF} / \mathrm{CD}_{2} \mathrm{Cl}_{2}$, II furnished a cationic species stable up to $-20^{\circ} \mathrm{C}$. No hydrido species could be detected down to $-95^{\circ} \mathrm{C}$, thus if protonation of the iron or methylene carbons of the (diene) $\mathrm{Fe}(\mathrm{CO})_{3}$ occurred, it did not lead to stable ionized $\mathrm{Fe}-\mathrm{H}$ species. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 3) suggest the structure IX \leftrightarrow IX' \leftrightarrow IX'. These data are consistent with a highly delocalised cationic species involving the (diene) $\mathrm{Fe}(\mathrm{CO})_{3}$ function as shown by the downfield shifts observed for

TABLEE 3

		$\begin{aligned} & \delta(\mathrm{EH}) \\ & (\mathrm{p}, \mathrm{~m}) \end{aligned}$		i(C) (ppm)	
$\mathrm{H}_{2}{ }^{+}$	H(1)	2.658 bs	C(1)	13.2ci	175
,	H(1)	3.48 bs	C(2)	43.14	164
	H(3) $\mathrm{HexO}^{\text {d }}$	4.58 bs	C(3)		142
	Hi(3)endo	$3.09 \mathrm{~m}-\mathrm{dc}$	$\mathrm{C}(+)$	$+5.8 \mathrm{c}$	162
endo) H i/f $\mathrm{H}(\mathrm{Z})$	H(4)	$3.96 \mathrm{~m}-\mathrm{d}^{\text {c }}$	C(5)	1-4.2. ${ }^{\text {s }}$	
	H(7)	5.25 bs	C(6)	81.55	
$\mathrm{H}^{2}-\mathrm{H}^{2}-\mathrm{S}^{-1 / 2}$	H(8E)	$4.70 \mathrm{~d}^{\text {d }}$	C(7)	8.4.8d	168
	H(8\%)	3.31d	C(8)	78.74	176
$\mathrm{COC}_{3} \mathrm{Fe}$	H(9E)	$3.25 \mathrm{~d}^{d}$	C(9)	+8.2t	168
	H(9\%)	1.98 d	CO	$\underline{200.45(2 C)}$	
IX \rightarrow X $\mathrm{X}^{\prime} \rightarrow \mathrm{X}^{\prime \prime}$				$200.1 \mathrm{~s}(1 \mathrm{C})$	

 ments were confirmed by selective decoupling experiments. $c^{3} J+H z . d^{2}=J(Z F)+H z .{ }^{3}$ internal reference: $\delta\left(\mathrm{CD}_{2} \mathrm{CI}_{2}\right) 53.6 \mathrm{pmm}$.
the diene carbons and hydrogens compared to V and X (see below) and by the relatively large ${ }^{1} J(\mathrm{CH})$ coupling constants for $\mathrm{C}(8)$ and $\mathrm{C}(9)$. The $\delta(\mathrm{CO}) 200.1$ and 200.4 ppm are similar to the $\delta(\mathrm{CO})$ in dienyliron tricarbonyl cations [4 c] and protonated dieneiron tricarbonyl complexes [14]. The doublet at $\delta(\mathrm{C})$ $13.2 \mathrm{ppm}\left({ }^{\mathrm{t}} J(\mathrm{CH}) 175 \mathrm{~Hz}\right.$) strongly suggests a nortricyclane structure [16]. The assignments given in Table 3 are tentative; they were made with the help of selective proton decoupling of the ${ }^{13} \mathrm{C}$ NMR spectrum [17]. Further experiments (labelling, etc.) would be necessary to make them definitive.

Quenching by methanol and $\mathrm{NaHCO} \mathrm{H}_{3}$ of a $\mathrm{HSO}_{3} \mathrm{~F} / \mathrm{SO}_{2} \mathrm{ClF}$ solution of IX yielded the endo- η^{4}-dieneiron tricarbonyl complex X whose structure was established by X-ray crystallography (see below). Cerium(IV) oxidation of X yielded 5,6-dimethylene-exo-2-methoxy-syn-7-norbornanol (XI). The spectro-

(XI)
scopic data of X (Table 2) are quite similar to those of the complexed chlorohydrin V , thus confirming this latter structure.

Several factors can be invoked to rationalise the remarkable difference in reactivity towards HCl between II and III. In the latter case, The $\mathrm{Fe}(\mathrm{CO})_{3}$ group may retard the epoxide heterolysis because of its inductive effect [9] and/or its steric effect. The latter is probably important. Indeed, when examining the structure of X (which is also an endo complex like III), several short interatomic contacts are observed, e.g. $\mathrm{C}(11) \cdots \mathrm{H}(2)$ of $2.59 \AA$ which is close to the sum of Van der Waals radii [18]. Assistance by solvation of the positive charge during the epoxide heterolysis should thus be more difficult in the endo than the exo case.

Further experiments are required to establish the exact role played by the dieneiron tricarbonyl function in II when generating a homoconjugated carbocationic intermediate. For the moment we recognise the importance of the sterochemistry of the $\mathrm{Fe}(\mathrm{CO})_{3}$ group for the stabilisation of a β-carbenium ion.
Finally, our results must be compared with the acid promoted rearrangement of epoxides of norbornadienes XII. In this case, the hypothetical hydroxynortricyclyl cationic intermediates XIII undergo Grob fragmentations [19] more rapidly than nucleophile quenching. The bicyclic aldehydes XIV thus formed may then equilibrate with the bicyclic ethers XV via [3,3]-sigmatropic rearrangements

[20]. Our results suggest that an intermediate of type XIII or the conjugate base of IX' generated by protonation of II does not undergo the Grob fragmentation probably because the positive charge is highly delocalised by the $\mathrm{Fe}(\mathrm{CO})_{3}$ group (contribution of limit structure IX).

Crystal and molecular structures of $\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}\right) \mathrm{Fe}(\mathrm{CO})_{3}(\mathrm{II}),\left(\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}\right) \mathrm{Fe}(\mathrm{CO})_{3}$ (VIII) and ($\mathrm{C}_{10} \mathrm{H}_{1+} \mathrm{O}_{2}$) $\mathrm{Fe}(\mathrm{CO})_{3}(\mathrm{X})$

X-ray measurements were carried out with a Syntex P2; automatic four-circle diffractometer. The crystal data and the method used are summarised in Table 4.

The crystal forms were accurately measured as before [13] and used to correct the intensities for absorption. The computer programs used for the data reduction and structure analyses of II and X were taken from the "X-RAY 72" program system [21]. Scattering factors for the neutral non-hydrogen atoms were taken from Cromer and Mann [22], for hydrogen atoms from Stewart et al. [23], and anomalous dispersion coefficients for Fe from Cromer [24]. The structures of II and X were solved by Patterson and Fourier methods and that of VIII by direct methods (program MULTAN [26]).

Complex II: during the measurements, the intensities of the check reflections decreased to 40% of their initial values and were corrected accordingly. However the number of observed reflections and the quality of the collected data did not allow the determination of the hydrogen atom positions. The unit cell contains two crystallographically non-equivalent molecules which are referred to as A . and B in subsequent tables. The final positional and thermal parameters are listed in Table $5 *$, calculated bond lengths and angles in Tables 7 and 8 and the equations for several least-squares planes and some dihedral angles in Table 9. A view of the molecular structure is given in Fig. 1.

Complex VIII: Crystallisation from n-hexane (or other hydrocarbons) gave crystals of poor quality. Despite this fact, a crystal structure determination was

[^1]TABLE 4
SUMMARY OF CRY゙STAL DATA，NTFNSITY（OLLFCTION ANDRFFINFMFぶT

	Complex ${ }^{\text {II }}$	Complex Vili	Complex S
Formula	$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{Fe}$	$\mathrm{C}_{12} \mathrm{HaxclO}_{4} \mathrm{Fe}$	$\mathrm{Cl}_{13} \mathrm{H}_{1+2} \mathrm{O}=\mathrm{Fe}$
Molecular weight	274.05	308.5	305.62
Dimensions（mm）	$0.11 \times 0.36 \div 0.42$	$0.19 \times 0.35 \times 0.38$	$0.21 \times 0.26 \div 0.32$
Crystal ssstem	Orthorhombic	Orthorhombic	Monoclinic
a（ ${ }^{\text {（ ）}}$	$7.6200(2)$	11．505（1）	$9.158(1)$
b（ ${ }^{\text {（ ）}}$	13.950 （2）	12．507（1）	$12.11+(2)$
$c(\therefore)$	$21.602(3)$	35.596 （3）	12．3－4．3（2）
			10．7113）
1－ A^{3} ）	$\underline{2996}$	5122	129.4
Z	8	$1 ;$	－
$d_{\text {caled }}\left(\mathrm{s} / \mathrm{cm}^{3}{ }^{3}\right)$	1.585	1.59	1.57
$d_{\text {cousd }}\left(\mathrm{s} / \mathrm{cm}^{3}{ }^{3}\right)$	$1.59(1)$	1 150（1）	1．57（1）
Fouo	1040	$\underline{-296}$	432
Space group	${ }^{\prime 2} \underline{2}_{1} \underline{2}_{1} \underline{2}_{1}$	puca	$1{ }^{1} 21 \mathrm{c}$
Systematic absences	$\begin{aligned} & h 00: h=2 n+1.0 k 0 \\ & k=2 n+1.00 l: \\ & t=2 n+1 \end{aligned}$	$\begin{aligned} & 0 k t: k=2 n+1 \\ & h 0 t l=2 n+1 \\ & n k 0: h=2 n \div 1 \end{aligned}$	$\begin{aligned} & 0 k 0: k=2 n+1 \\ & \text { nol: } l=2 n+1 \end{aligned}$ h $A:$ ：noconclitions
Radiation	$\begin{aligned} & \text { Mo- } K_{\mathrm{i}}(A=0.71065 \mathrm{~A}) \\ & \text { Nb filtered } \end{aligned}$	same：	same
$\mu\left(\mathrm{cm}^{-1}\right)$	13.47	12.4	12.1
Scan method	20－6）	same	same
Bachground from	Scan profile interpreta－ tion［25］	same	same
$\left(\sin 0 \lambda_{\text {max }}\right)$	0．54	0.54	0.596
Data collected	$+h_{1}+i_{2}+1$	$\div h, \div k,+t$	$\div h, \div h,=t$
Number of unique reflections	1755	3380	2296
Number of reflections $<3 \sigma$	262	1201	578
Number of observations，			
Number of variables	5.7	7.0	7.0
Structure solution	Patterson and Fourier	MULTAN［26］ and Fourier	Patterson and Fourier
Refinement method	Block diagonal least－squares	same	same
Function minimised	$\because w\left(F{ }^{-}{ }^{1}-1 F_{c}\right)^{2}$	same	same
\boldsymbol{w}	$1 / \sigma^{2}$	same	same
\boldsymbol{R}	0.050	0.081	0.027
$\boldsymbol{R}_{\text {w }}$	0.057	0.110	0.030
Goodness of fit	3.0	5.7	1.44

attempted．Solution of the structure by direct methods allows us to confirm that the iron tricarbonyl group is in the endo position with respect to the roof－ shaped ligand and that the Cl atom is in the exo position（Fig．2）．The poor quality of the measurements led us to abandon further refinement at $R=0.081$ when we were sure of the configuration．For this reason the molecular dimen－ sions will not be discussed in detail．

Complex X：All hydrogen atoms were found from a difference synthesis after preliminary refinement to $R=0.051$ ．The final positional and thermal para－ meters are listed in Table 6，calculated bond lengths and angles in Tables 10 and 11 and the equations for several least－squares planes and some dihedral angles in Table 12．A view of the molecular structure prepared by the program ORTEP ［27］is given in Fig．3．All numbering schemes of the ligands are identical with those used for nomenclature purposes．
POSITIONAL AND THERMAL PARAME'TERS FOR IIa

Atom	X	Y	$\%$	111	U_{22}	113,1	v_{12}	$U_{1,3}$	$\\|_{2,1}$
$\mathrm{Fe}(\mathrm{A})^{6}$	0.0992(2)	$0.2629(1)$	0.22841 (7)	0.03330(7)	0.0.413(8)	$0.03553(8)$	$0.0016(7)$	0.000:3(8)	-0.000)5(8)
$C(1 \Lambda)$	$0.338(1)$	$0.0872(7)$	$0.1760(5)$	0.04917	(1.0.4 $4(7)$	$0.0350(7)$	$0.005(6)$	$0.0033(3)$	-0.005)(6)
C(2A)	0.490 (1)	$0.0389(8)$	$0.211 .9(5)$	$0.037(7)$	0,056(8)	$0.046(8)$	$0.009(6)$	$0,005(6)$	0.00 .1 (6)
$\mathrm{C}(4 \mathrm{~A})$	0.598(1)	$0.1162(8)$	$0.2348(6)$	0.027(6)	0,057(7)	$0.069(9)$	$0.00 \cdot 1(6)$	$0.000(7)$	$0.0013(7)$
C(5A)	0.509(1)	0.2101 (8)	$0.2104(5)$	$0.032(6)$	$0.058(7)$	$0.0355(7)$	-0.011 1 (6)	-0.002(5)	$0.00 .4(6)$
C(6A)	0.346(1)	$0.2098(7)$	$0.25 .10(5)$	0.034(6)	$0.037(7)$	0.0.97(7)	$0.002(5)$	-0.010(5)	$0.0013(6)$
C(7A)	$0.2388(1)$	$0.1367(7)$	0.2309(5)	$0.033(6)$	$0.036(6)$	$0.030(6)$	$0.000(5)$	$0.003(5)$	0.0)1.4(i)
C(8A)	0.436(2)	$0.1746(7)$	0.1478 (5)	0.0.49(7)	0.040 (6)	0.0.43(7)	-0.00) ${ }^{\text {(}}$ (6)	0.001 (i)	$0.000(5)$
$\mathrm{C}(9 \mathrm{~A})$	0.071(1)	0.1176(7)	0.2595 (5)	$0.0 .40(7)$	0.040 (6)	$0.060(7)$	$0.005(6)$	$0.00 .4(6)$	$0.018(5)$
$C(10 \mathrm{~A})$	0.289(2)	0.2691 (9)	0.3016 (5)	0.0.45(7)	0,067(8)	$0.045(7)$	$0.002(7)$	-0.011(6)	-0.007(7)
$\mathrm{C}(11 \mathrm{~A})$	-0.070(2)	$0.3065(9)$	0.278 (if)	$0.052(8)$	$0.078(9)$	(0.0.44(8)	$0.002(7)$	$0.000(8)$	-0.005(7)
C(12A)	$0.174(2)$	$0.3724(9)$	0.1964 (5)	$0.050(8)$	$0.046(7)$	$0.049(8)$	-0.002(6)	$0.012(\mathrm{G})$	-0.017 (6)
$\mathrm{C}(13 \mathrm{~A})$	-0.022(2)	0.2332(8)	0.1598 (6)	$0.052(7)$	$0.054(7)$	$0.0 .45(8)$	$-0.005(6)$	-0.005(6)	$0.000(7)$
O(1A)	-0.180(1)	$0.3349(7)$	$0.3088(4)$	0.06997	$0.1209(9)$	0.0659(7)	$0.017(7)$	0.030 (6)	-0.019 (6)
$\mathrm{O}(2 \mathrm{~A})$	$0.219(1)$	0.4444(6)	0.1745	0.087(7)	$0.061(6)$	0.07667	--0.011(${ }^{\text {() }}$	0.020 (6)	$0.002(5)$
$0(3 \Lambda)$	$0.660(1)$	0.0526(6)	0.1867 (4)	$0.044(5)$	$0.063(5)$	0.070(6)	$0.017(4)$	$0.007(5)$	$0.003(5)$
$\mathrm{O}(4 \mathrm{~A})$	-0.096(1)	$0.2176(6)$	0.1154 (4)	0.076(6)	$0.083(6)$	$0.0533(5)$	-0.00).4(6)	-01,017(5)	--0.013(5)
$\mathrm{Fe}(\mathrm{B})$	0.0530(2)	$0.0186(1)$	-0.0.4119(7)	0.0411 (8)	$0.0335(7)$	0.0386(8)	$-0.0017(8)$	-0,0089(8)	$0.0023(8)$
C(1B)	$0.295(2)$	-0,1510(7)	0.0180(5)	0.037(6)	$0.031(6)$	0.050(8)	$0.010(5)$	-0,010(6)	0.001 (5)
C(2B)	0.444(2)	-0.1337(7)	0.0661 (5)	$0.034(7)$	$0.035(6)$	0.066(8)	$0.012(6)$	-0,005(6)	0.003 (6)
C(4B)	0.550(1)	-0.0564(7)	0,0421(5)	$0.028(5)$	$0.042(6)$	0.0.47(7)	$0.010(5)$	$0.003(6)$	-0.002(6)
C(5B)	0.466(1)	$-0.0305(8)$	-0.021 6 (5)	$0.032(6)$	0.048(6)	0.051(7)	$0.0133(6)$	$0.0033(6)$	0.000 (i)
C(GB)	$0.294(1)$	0.0175 (8)	0.0031(4)	$0.037(6)$	0.046(7)	0.027(6)	-0.007(6)	$-0.012(5)$	0.003 (6)
$C(7 B)$	$0.189(1$.	-0.0572(7)	0.0267 (5)	$0.035(6)$	$0.037(6)$	0.025 (6)	-0.007(5)	-0.6)8(5)	0.001 (5)
C(8B)	$0.395(1)$	-0.1284(7)	-0.0443(5)	0.046(7)	$0.037(6)$	0.0.47(7)	0.002(5)	$0.007(7)$	-0).012(6)
C (9B)	$0.019(1)$	-0.0366(8)	0.052335	$0.031(6)$	$0.065(7)$	$0.037(7)$	$0.002(5)$	-0.0097(5)	0.020 (6)
C(10B)	0.232(2)	$0.1139(7)$	0.0051 (6)	$0.042(7)$	$0.032(7)$	0.0(9)(9)	$-0.003(6)$	$-0.024(7)$	0.001 (6)
C(11B)	-0.120(2)	$0.1025(8)$	-0.0321(6)	$0.061(8)$	$0.036(7)$	$0.061(8)$	-0.004(6)	-0,025(7)	0.010 (6)
C(12B)	-0.061(2)	-0.0825 7)	-0.0744(5)	0.047(7)	$0.030(6)$	$0.039(7)$	$0.008(6)$	-0.007(6)	$0.006(5)$
C(13B)	0.142(2)	$0.0502(7)$	-0.1149(6)	$0.076(9)$	0.043(7)	0.04:3(8)	-0.005(6)	-0,0133(7)	0.003 (6)
O(1B)	-0.236(1)	$0.1558(6)$	-0.0273(4)	$0.075(7)$	$0.052(6)$	$0.088(7)$	$0.022(5)$	-0,008(6)	0.001 (5)
O(2B)	-0.131(1)	-0.1426(5)	-0.0961(4)	$0.086(7)$	0.040(5)	0.073(6)	-0.024(5)	$-0.013(5)$	-0.010(5)
O(3B)	0.620(1)	-0.1528(5)	0.0446 (4)	$0.040(5)$	$0.071(6)$	0.060(6)	$0.014(4)$	-0,002(4)	$-0.005(5)$
O(4B)	$0.205(1)$	0.0709(6)	-0.1614(4)	0.105(8)	0.069(6)	$0.046(6)$	$-0.011(6)$	$0.008(6)$	$0.013(5)$

${ }^{a}$ The temperature factor has the form e^{-T} where $T=2 \pi^{2} \Sigma h_{i} h_{j} U_{i j} a_{i}{ }^{\star} a_{j}{ }^{\star},{ }^{b}$ A and B refer to the two crystallographically non-equivalent molecules.
POSITIONAL AND THERMAL PARAMETERS FOR X ${ }^{a}$

Atom	X	\boldsymbol{Y}	Z	$U_{11}($ or $U)$	U_{22}	$U_{3.3}$	U_{12}	U_{13}	U_{23}
C(1)	0,3809(3)	0.6544(2)	$0.1538(2)$	0.028(1)	0.035(1)	0.031(1)	$0.002(1)$	$0.012(1)$	$0.00 \cdot 1(1)$
C(2)	0.3517 (3)	0.4316(2)	0.1765(2)	0.027(1)	0.031(1)	$0.041(1)$	$0.003(1)$	$0.012(1)$	$-0.003(1)$
C(3)	0.4213 (3)	0.4211(2)	$0.3074(2)$	0.034(1)	0.034(1)	0.043(1)	$0.006(1)$	$0.013(1)$	$0.008(1)$
C(4)	0.4796(3)	0.5380(2)	0,3464(2)	0.025(1)	0.044(1)	0.032(1)	0.001 (1)	$0.0022(1)$	0,000(1)
C(5)	0.3478 (3)	0.6188(2)	0,3256(2)	$0.02 \mathrm{~b}(1)$	0.028(1)	0.038(1)	$-0.005(1)$	$0.008(1)$	$-0.005(1)$
C(6)	0.2865 (3)	0.6298(2)	0.2056(2)	0.026(1)	0.027(1)	0.041(1)	$-0.003(1)$	0.010 (1)	$0.003(1)$
C(7)	0.5383 (3)	0.5730(2)	0.2453(2)	0.024(1)	0.038(2)	0.050(2)	$-0.003(1)$	0.01 (1)	-0.002(1)
C(8)	0.2820(3)	0.6807(2)	0.3970(2)	0.034(1)	0.041(2)	0.046(2)	-0,002(1)	0,011(1)	-0.010(1)
C(9)	$0.1614(3)$	0.7019(2)	$0.1588(2)$	0.038(1)	0.030(1)	0.048(2)	$0.0033(1)$	$0.012(1)$	$0.005(1)$
C(10)	0.3514 (4)	0.3276(3)	0.0112(2)	0.052(2)	0.056(2)	0.044(2)	$0.008(2)$	$0.016{ }^{(2)}$	-0.010(1)
C(11)	-0,0033(3)	0.5053(2)	$0.1638(2)$	0.027(1)	0.039(1)	0.047(1)	$0.009(1)$	$0.013(1)$	$-0.001(1)$
C(12)	0.1097 (3)	$0.4879(2)$	0.3'198(2)	ù.ü37(1)	û.û48(2)	0.0.47(2)	u.000(1)	0.017(1)	$-0.003(1)$
C(13)	-0.0399(3)	0.6770(2)	0.2922(2)	0.034(1)	$0.038(1)$	0.062(2)	-0.006(1)	$0.01 \cdot 1(1)$	-0.010(1)
$\mathrm{Fe}(1)$	0.11004 (3)	0.50140(3)	$0.27577(3)$	0.0236(1)	0.0307(2)	0.0393(2)	-0.0002(2)	$0.010 .1(1)$	-0.00.47(2)
O(1)	0.6629(2)	0.5116(2)	$0.2324(2)$	0.026(1)	0.060(1)	0.066(1)	$0.003(1)$	$0.018(1)$	-0.006(1)
O(2)	0.4344(2)	0.3582(1)	$0.1248(1)$	0.037(1)	0.044(1)	0.046(1)	0.0108(8)	0.01133(8)	-0.0098(8)
O(3)	-0.0818(2)	0.4503(2)	0,0941(2)	0.041(1)	0.061(1)	0.064(1)	-0.005(1)	$0.001(1)$	$-0.02 \cdot 1(1)$
O(4)	0.1056(3)	0.4226(2)	0.4461(2)	0.081(2)	0.073(1)	0.077(1)	$0.003(1)$	$0.0 .40(1)$	$0.027(1)$
O(5)	-0.1350(2)	0.7334(2)	0,3020(2)	0.051(1)	0.053(1)	0.136(2)	0.011 (1)	0.0.41(1)	-0.02:3(1)
H(1)	0.372(2)	0.570(2)	0.076(2)	0.025(6)					
H(2)	0.244(3)	0.412(2)	0,149(2)	0.027(6)					
$\mathrm{H}(3 \mathrm{~N})$	0.347 (3)	0.396(2)	0.339(2)	0.048(7)					
$H(3 X)$	0.507 (3)	0.370(2)	0.324 (2)	0.026(6)					
H(4)	0.556(3)	0.541 (2)	0.419(2)	0.042(7)					
H(7)	$0.568(3)$	$0.647(2)$	0.253(2)	0.032(6)					
H(8E)	0.306(3)	0.664(2)	0.479(2)	0.041(7)					
H(8Z)	0.257 (3)	0.752(2)	$0.377(2)$	0.048(8)					
H(9E)	$0.108(3)$	0.697(2)	$0.077(2)$	0.041(7)					
H(9\%)	$0.168(3)$	0.775(2)	$0.192(2)$	0.0.41(7)					
H(10)	$0.634(3)$	0.457(2)	$0.204(2)$	$0.05(1)$					
H(100)	0.250(4)	$0.296(2)$	$0.003(2)$	0.08(1)					
H(101)	$0.325(4)$	0.394(3)	-0.038(3)	0.10(1)					
$\mathrm{H}(102)$	0.417(3)	0.281(2)	-0.010(2)	$0.062(9)$					

[^2]TABLE:
DISTANCES FOR ($\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}$) $\mathrm{Fe}(\mathrm{CO})_{3}(\mathrm{II})$

Atoms	Distance (${ }^{\text {d }}$)	
	Molecule A ${ }^{\text {a }}$	Molecule B
Fe-C(6)	2.08(1)	$2.06(1)$
$\mathrm{Fe}-\mathrm{C}(7)$	2.07(1)	2.08(1)
$\mathrm{Fe}-\mathrm{C}(9)$	2.14 (1)	2.17(1)
$\mathrm{Fe}-\mathrm{C}(10)$	2.15 (1)	2.14(1)
$\mathrm{Fe}-\mathrm{C}(11)$	1.77 (1)	1.78(1)
$\mathrm{Fe}-\mathrm{C}(12)$	1.75(1)	1.75 (1)
$\mathrm{Fe}-\mathrm{C}(13)$	1.79(1)	1.79(1)
C(11)-O(1)	$1.16(2)$	1.15 (2)
$\mathrm{C}(12)-\mathrm{O}(2)$	1.17 (2)	$1.18(2)$
$\mathrm{C}(13)-\mathrm{O}(4)$	1.13(2)	$1.12(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	1.57(2)	1.55(2)
C(1)-C(7)	$1.55(1)$	1.5う(1)
$\mathrm{C}(1)-\mathrm{C}(8)$	1.56 (2)	1.59 (1)
C(2)-C(4)	1.45 (2)	1.44(2)
C(4)-C(5)	1.56 (2)	1.56 (1)
C(5)-C(6)	1.52 (1)	$1.56(1)$
$\mathrm{C}(5)-\mathrm{C}(8)$	$1.57(2)$	1.55(1)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.41(1)	1.42(1)
$\mathrm{C}(6)-\mathrm{C}(10)$	1.44(2)	1.42(2)
$\mathrm{C}(7)-\mathrm{C}(9)$	1.43(2)	1.43 (1)
$\mathrm{C}(2)-\mathrm{O}(3)$	1.43(1)	$1.45(1)$
$\mathrm{C}(4)-\mathrm{O}(3)$	1.45 (2)	1.44(1)

a_{A} and B are the two crystallographically non-equivalent molecules.

Fig. 2. A perspective view of the molecular structure of ($\left.\mathrm{C}_{9} \mathrm{HI} 9 \mathrm{ClO}\right) \mathrm{Fe}(\mathrm{CO})_{3}$ (VIII).
'TABLE 8

Atoms	Angle ()	
	Morecule A	Molecule ${ }^{\text {a }}$
$\mathrm{C}(11)-\mathrm{Fe}-\mathrm{C}(12)$	100.0(5)	$101.4(6)$
$\mathrm{C}(11)-\mathrm{Fe}-\mathrm{C}(13)$	$102.2(6)$	$101.8(6)$
C(12)-Fe-C(13)	91.9(ij)	$91.2(6)$
$\mathrm{Fe}-\mathrm{C}(11)-\mathrm{O}(1)$	179.1(12)	179.4(12)
$\mathrm{Fe}-\mathrm{C}(12)-\mathrm{O}(2)$	178.1(12)	177.33(13)
$\mathrm{Fe}-\mathrm{C}(13)-\mathrm{O}(4)$	177.5(12)	178.5(11)
$C(2)-C(1)-C(7)$	$99.4(9)$	$100.2(8)$
$C(2)-C(1)-C(8)$	100.4(9)	$101.3(8)$
$C(7)-C(1)-C(8)$	$101.2(9)$	100.6(8)
$C(1)-C(2)-C(4)$	$105.6(9)$	$106.0(8)$
C(2)-C(4)-C(5)	105.6(9)	105.8(9)
$C(4)-C(5)-C(6)$	$99.5(8)$	98.6(7)
$C(4)-C(5)-C(8)$	$100.5(9)$	102.1(7)
$C(6)-C(5)-C(8)$	101.7(3)	$100.8(7)$
C(5)-C(6)-C(7)	107.1(9)	106.2(9)
$C(5)-C(6)-C(9)$	132.7(10)	$133.9(9)$
$C(7)-C(6)-C(9)$	120.1(10)	$119.8(10)$
$C(1)-C(7)-C(6)$	106.5(9)	$106.5(9)$
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(10)$	132.5(10)	133.6 (9)
$C(6)-C(7)-C(10)$	$121.0(10)$	$119.9(10)$
$C(1)-C(8)-C(5)$	94.5(8)	94.1(7)
$C(1)-C(2)-O(3)$	$115.2(9)$	115.4 (9)
$C(4)-C(2)-O(3)$	60.2 (8)	59.6 (7)
C(2)-C(4)-O(3)	$59.2(7)$	60.6(7)
$C(5)-C(4)-O(3)$	115.0 (9)	113.8 (9)
$\mathrm{C}(2)-\mathrm{O}(3)-\mathrm{C}(4)$	60.5 (8)	$59.8(7)$
$\mathrm{C}(7)-\mathrm{Fe}-\mathrm{C}(10)$	39.7(4)	39.2(4)
C(6)-Fe-C(7)	$39.7(4)$	40.0 (4)
C(6)-Fe-C(G)	39.6(4)	39.6(4)

Fig. 3. A perspective view of the molecular structure of $\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}\right) \mathrm{Fe}(\mathrm{CO})_{3}$. (X).

Discussion

The structures are composed of discrete monomeric molecules and all intermolecular contacts are equal to or greater than the sum of normal Van der Waals radii.
$\left(\mathrm{C}_{4} \mathrm{H}_{1}, \mathrm{O}\right) \mathrm{Fe}(\mathrm{CO})_{3}(\mathrm{II})$: there is essentially mirror symmetry for the whole molecule, with mirror plane I (Table 9) passing through the Fe atom, one CO group, $\mathrm{C}(\mathrm{S})$ and $\mathrm{O}(3)$. The $\mathrm{Fe}(\mathrm{CO})$, group is in the exo position position and the epcxide ring has the same exo configuration as in the free ligand, the latter being based on NMR arguments [10]. Apart from the cis-butadiene system, coordination to Fe does not significantly affect the rest of the carbon skeleton as the plane defined by $C(1), C(5)$ and $C(S)$ bisects the dihedral angle between planes III and IV (Table 9).
$\left(\mathrm{C}_{i}\left(\mathrm{H}_{i} \mathrm{O}_{2}\right) \mathrm{Fe}(\mathrm{CO})_{2}(\mathrm{X})\right.$: the most interesting result for this derivative of II is

TABLE: 9
WEIGHTED LEAST—SQUARFS PLASFSFOR (CGH 10 O OFE(CO) 3 (II)

Displacement of atoms from mean plane (A)

Dihedral angle between planes, deg.

I-II	$89.1(A)$	$88.9(B)$	I-III	$89.4(A)$	$89.5(B)$	I-IV	$88.2(A)$	$89.2(B)$
I-V	$89.5(A)$	$89.8(B)$	II-III	$1.0(A)$	$0.3(B)$	$I I-V$	$90.0(A)$	$89.0(B)$
III-IV	$105.3(A)$	$105.2(B)$	III-VIc	$129.3(A)$	$126.9(B)$	IV-VI	$125.4(A)$	$128.1(B)$

[^3]TABLE: 10
DISTANCFS FOR (C $\left.\mathrm{C}_{1} \mathrm{H}_{1+} \mathrm{O}_{2}\right) \mathrm{Fe}(\mathrm{CO})_{3}(\mathrm{~N})$

Atoms	Distance (-1)	stoms	Distatuce (\%)
Fe-C(5)	$2.101(2)$	$C(10)-O(2)$	$1.417(3)$
$\mathrm{Fe}-\mathrm{C}(6)$	$2.101(3)$	C(11)-O(3)	1.147(3)
$\mathrm{Fe}-\mathrm{C}(8)$	$\because .105(3)$	$\mathrm{C}(12)-\mathrm{O}(4)$	1.14.3(.3)
$\mathrm{Fe}-\mathrm{C}(9)$	$2.115(3)$	C(13)-O(5)	$1.1+2(3)$
$\mathrm{Fe}-\mathrm{C}(11)$	1.783(2)	C(1)-H(1)	$0.95(2)$
$\mathrm{Fe}-\mathrm{C}(12)$	1.788(3)	$\mathrm{C}(2)-\mathrm{H}(2)$	$0.97(2)$
Fe-C(13)	1.780(3)	C(3)-H(3N)	0.97(2)
C(1)-C(2)	$1.552(3)$	C(3)-H(3N)	0.93(3)
C(1)-C(6)	$1.552(4)$	$\mathrm{C}(4)-\mathrm{H}(4)$	$0.95(2)$
C(1)-C(7)	$1.549(3)$	C(7)-H(7)	0.93(2)
C(2)-C(3)	$1.539(3)$	C(8)-H(8E)	0.97(3)
$C(2)-O(2)$	$1.433(3)$	C(8)-H(8Z)	0.91 (3)
C(3)-C(1)	1.537(3)	$\mathrm{C}(9)-\mathrm{H}(9 E)$	0.97 (2)
G(4)-C(5)	1.כ15(3)	C(9)-H(9\%)	0.97 (2)
C(4)-C(7)	1.351(4)	C(10)-H(100)	0.97(3)
C(5)-C(6)	1.411(3)	C(10)-H(101)	0.99(3)
$C(5)-C(8)$	$1.418(4)$	$\mathrm{C}(10)-\mathrm{H}(102)$	0.92(3)
C(6)-C(9)	$1.416(3)$	O(1)-H(10)	0.75 (2)
C(7)-0(1)	1.410 (3)	O(2) $\cdots \mathrm{H}(10)$	2.16 (1)
C(11) \cdots (2)	$2.59(2)$	C(12) $\cdots \mathrm{H}(3 \mathrm{~N})$	2.63 (2)

TABLE 11
BOND ANGLES FOR (C $10^{\left.H_{14} \mathrm{O}_{2}\right) \mathrm{Fe}(\mathrm{CO})_{3}(\mathrm{X})}$

Atoms	Angle (${ }^{\circ}$)	Atoms	Angle (*)
$\mathrm{C}(5)-\mathrm{Fe}-\mathrm{C}(6)$	39.2(1)	$\mathrm{H}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$114(1)$
$\mathrm{C}(5)-\mathrm{Fe}-\mathrm{C}(8)$	39.4(1)	$\mathrm{H}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	$114(1)$
$\mathrm{C}(6)-\mathrm{Fe}-\mathrm{C}(9)$	39.3(1)	$\mathrm{H}(1)-\mathrm{C}(1)-\mathrm{C}(7)$	$118(1)$
$\mathrm{C}(11)-\mathrm{Fe}-\mathrm{C}(12)$	90.6(1)	$\mathrm{H}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	$113(1)$
$\mathrm{C}(11)-\mathrm{Fe}-\mathrm{C}(13)$	97.9(1)	$\mathrm{H}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	113(1)
$\mathrm{C}(12)-\mathrm{Fe}-\mathrm{C}(13)$	99.1(1)	$\mathrm{H}(2)-\mathrm{C}(2)-\mathrm{O}(2)$	$108(1)$
C(2)-C(1)-C(6)	110.5(2)	$\mathrm{H}(3 \mathrm{X})-\mathrm{C}(3)-\mathrm{C}(2)$	109(1)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	100.5(1)	$\mathrm{H}(3 \mathrm{X})-\mathrm{C}(3)-\mathrm{C}(4)$	$110(1)$
C(6)-C(1)-C(7)	97.6(1)	$\mathrm{H}(3 X)-\mathrm{C}(3)-\mathrm{H}(3 N)$	$110(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	103.0(1)	$\mathrm{H}(3 \mathrm{~N})-\mathrm{C}(3)-\mathrm{C}(2)$	110(1)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	111.9(2)	$\mathrm{H}(3 \mathrm{~N})-\mathrm{C}(3)-\mathrm{C}(4)$	114(1)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(2)$	107.5(2)	$\mathrm{H}(4)-\mathrm{C}(4)-\mathrm{C}(3)$	$114(1)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	104.0(2)	$\mathrm{H}(4)-\mathrm{C}(4)-\mathrm{C}(5)$	$117(2)$
C(3)-C(4)-C(5)	$111.1(2)$	$\mathrm{H}(4)-\mathrm{C}(4)-\mathrm{C}(7)$	$114(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(7)$	100.1(2)	$\mathrm{H}(7)-\mathrm{C}(7)-\mathrm{C}(1)$	113(1)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(7)$	98.1(2)	$\mathrm{H}(7)-\mathrm{C}(7)-\mathrm{C}(4)$	110(1)
C(4)-C(5)-C(6)	106.3(2)	$\mathrm{H}(7)-\mathrm{C}(7)-\mathrm{O}(1)$	107(1)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(8)$	134.8(2)	$\mathrm{H}(8 E)-\mathrm{C}(8)-\mathrm{H}(8 Z)$	$115(2)$
$C(6)-C(5)-C(8)$	118.9(2)	$\mathrm{H}(8 E)-\mathrm{C}(8)-\mathrm{C}(5)$	121(1)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	106.3(2)	$\mathrm{H}(8 Z)-\mathrm{C}(8)-\mathrm{C}(5)$	$117(2)$
C(1)-C(6)-C(9)	133.9(2)	$\mathrm{H}(9 E)-\mathrm{C}(9)-\mathrm{H}(9 Z)$	$115(2)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(9)$	119.7(2)	$\mathrm{H}(9 E)-\mathrm{C}(9)-\mathrm{C}(6)$	118(1)
C(1)-C(7)-C(4)	93.7(2)	$\mathrm{H}(9 \mathrm{Z})-\mathrm{C}(9)-\mathrm{C}(6)$	119(1)
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{O}(1)$	$116.6(2)$	$\mathrm{H}(100)-\mathrm{C}(10)-\mathrm{O}(2)$	$115(1)$
$\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{O}(1)$	$115.7(2)$	$\mathrm{H}(101)-\mathrm{C}(10)-\mathrm{O}(2)$	109(2)
$\mathrm{Fe}-\mathrm{C}(11)-\mathrm{O}(3)$	176.7(3)	$\mathrm{H}(102)-\mathrm{C}(10)-\mathrm{O}(2)$	104(1)
$\mathrm{Fe}-\mathrm{C}(12)-\mathrm{O}(4)$	178.2(3)	$\mathrm{H}(100)-\mathrm{C}(10)-\mathrm{H}(101)$	102(3)
$\mathrm{Fe}-\mathrm{C}(13)-\mathrm{O}(5)$	178.7(3)	$\mathrm{H}(100)-\mathrm{C}(10)-\mathrm{H}(102)$	114(3)
C(2)-O(2)-C(10)	113.4(2)	$\mathrm{H}(101)-\mathrm{C}(10)-\mathrm{H}(102)$	113(3)
$\mathrm{O}(2) \cdots \mathrm{H}(10)-\mathrm{O}(1)$	145(3)	$\mathrm{H}(10)-\mathrm{O}(1)-\mathrm{C}(7)$	134(2)

ГABIE: 12
IFAST-SQUARESPLANESFOR (C $\left.10 \mathrm{H}_{14} \mathrm{O}_{2}\right) \mathrm{FE}(\mathrm{CO})_{3}$ (N)

Plane	Atoms defining the plane ${ }^{\text {a }}$	Equation of mean plane
1	Fe, C(7), C(13), O(5), n	$0.750 . \mathrm{K}-0.822 Y+11.291 Z=2.711$
II	C(11). C(12),m.m	$-6.381 \mathrm{~K}+8.5635+4.018 Z=5.005$
III	$\mathrm{C}(\stackrel{5}{3}), \mathrm{C}(6), \mathrm{C}(8), \mathrm{C}(9)$	$6.072 \mathrm{~K}+9.066 \mathrm{Y}-2.270 Z=6.982$
IV	C(1), C(4), C(5). C(6)	$6.006 \mathrm{~F}+9.144 Y-2.279 Y=7.008$
V	H(1), C(1), C(7), C(4), H(4)	$-2.7345+11.480 Y+2.427 Z=5.704$

Plane I		Plane		Plane		Plane	
Fe	-0.001	C(11)	0.001	C(1)	-0.002	H(1)	0.007
$C(7)$	-0.008	C(12)	-0.001	C(4)	0.002	C(1)	-0.007
C(13)	0.002	77	0.001	C(5)	-0.003	C(7)	-0.003
O(5)	-0.005	$m{ }^{\circ}$	-0.001	C(6)	0.003	C(4)	0.002
n	0.012					H(4)	0.002

Dihedral angle between planes (${ }^{c}$

I-II	89.0	II-III	86.0	III-IX	45	V-X	121.2	
I-III	88.8	III--IV	0.6	IV-V	121.4	$V-X I$	122.4	
I-IV	89.0	III-VI	13	IV-X	117.4	X-XI	1.2	
$1-\mathrm{V}$	88.6	1II-VII	42	IV-SI	116.3			
$\mathrm{I}-\mathrm{X}$	89	III-VIII	11					
I-XI	89							

$a n, m$ and m^{\prime} are the midpoints of the bonds $C(5)-C(6), C(5)-C(8)$ and $C(6)-C(9)$, respectively. b Plane III: same displacements. ${ }^{c}$ Plane VI is defined by $\mathrm{C}(5), \mathrm{C}(8), \mathrm{H}(8 E)$; VII by $\mathrm{C}(5), \mathrm{C}(8), \mathrm{H}(8 \%)$: VIII by $C(6) . C(9), H(9 E):$ IX by $C(6), C(9), H(9 \%)$: X by $C(2), C(3), C(4) ; X 1, y C(1), C(9), C(3)$.
that the $\mathrm{Fe}(\mathrm{CO})_{3}$ group is now in the endo position with respect to the roofshaped ligand. The methoxy group is in the exo position and is linked intramolecularly to the hydroxyl group, the $\mathrm{O}(2) \cdots \mathrm{H}(10)$ distance of $2.16(1) \AA$ being typical for a hydrogen bond [28]. The cis-butadiene carbon chain is planar but $H(7)$ atoms deviate from the diene plane away from the metal by 42 and 45° (for $\mathrm{H}(8 Z)$ and $\mathrm{H}(9 Z)$, respectively), whereas $\mathrm{H}(E)$ atoms deviate by 11 and 13° towards the metal. Similar deviations have been found and discussed elsewhere [29] for several exo-1,3-dieneiron tricarbonyl complexes.

The following features are common to the three structures: the arrangement of ligands about the iron atom is approximately tetragonal pyramidal. Four coordination sites are occupied by 2 CO and the midpoints of the outer $\mathrm{C}-\mathrm{C}$ bonds of the cis-butadiene system. The apex-to-base angles are ca. 100° for the carbonyl groups and 111° for the $\mathrm{C}-\mathrm{C}$ bond midpoints. The basal angles are 92 , 94 and 64°, the small angle being that subtended by the two outer $C-C$ bonds of the diene. The diene plane is perpendicular to the basal plane and the Fe atom lies $0.5 \AA$ over it. The apical $\mathrm{Fe}-\mathrm{CO}$ bond makes an angle of 8° with the normal to the basal plane. The sum of angles at each inner carbon atom of the bonded diene is $360.0(5)^{\circ}$ and the difference Δ_{2} between the average of the outer $C-C$ distances and the inner $C-C$ distance is not significantly greater than zero (0.006(4) \AA for II and X). We have shown recently [13] from a comparison of Δ_{2} values extended to 42 (1,3-diene) $\mathrm{Fe}(\mathrm{CO})_{3}$ structures that, on the average, the three $\mathrm{C}-\mathrm{C}$ distances have indeed to be considered as equal.

Experimental

All reactions were carred out in an argon atmosphere and the solvents were dried and degassed by standard methods 300 . Mass spectra at 70 aV were measured with a Hewhet-Packard GC-MS 5980; LV rpectra in isooctant with a Beckman Acta V spectrophotometer; IR spectra in n-hexane with a PerkinElmer 577 spectrophotometer; ${ }^{1}$ I $(60 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(15.0 \mathrm{~S}$ MHz: spectral width $3750 \mathrm{~Hz}, 4096$ points) NMR spectra with a Bruker WP-60 spectrometer operating in the F"T mode and using a deuterium lock. F. Manzer (Mikrolabor, FTH Zurich) carried out tiee microanalyses.

The preparation of 6,7-dimethylene-exo-3-oxatricyclo(3.2.1.0.7 kotane 1) has been described elsewhere $[10]$

Reaction of I with iron and ruthenium carbonvis. (a) Fe, (CO). (13 s, 35.7 $\mathrm{mmol})$ and $\mathrm{I}(3.2 \mathrm{~g}, 23.8 \mathrm{mmol})$ were heated under reflux in TIF $/ \mathrm{n}$-hexane ($1 / 1$, 250 ml) for 24 h . Acid alumina, activity grade I was then added to decompose the $\mathrm{Fe}_{3}(\mathrm{CO})_{1_{2}}$ formed. After filtration and removal of solvent, the residue was taken up in THF and chromatographed on a $80 \times 2 \mathrm{~cm}$ column packed with Florisil using THF/n-hexane (1/1) as eluent. The first fraction of eluate contained $\mathrm{Fe}(\mathrm{CO})$, and the second yielded complex II after recrystallisation from n-pentane at $-25^{\circ} \mathrm{C}(4.1 \mathrm{~g} ; 15 \mathrm{mmol})$. Yield 63%. The same reaction in methanol gave II with a better yield (71\%).

II: Yellow air stable crystals. Single crystals suitable for X-ray diffraction studies were obtained by slow evaporation of an n-hexane solution at $0^{\circ} \mathrm{C}$ under argon. M.p. $102-103^{\circ} \mathrm{C}$. Anal. Found: $\mathrm{C}, 52.49 ; \mathrm{H}, 3.76 . \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{4}$ Fe calcd.: C , $52.59 ; \mathrm{H}, 3.67 \%$. Mass spectrum : $274\left(1.5 ; M^{+}\right), 246\left(12 ; M^{+}-\mathrm{CO}\right), 218(27$; $\left.M^{+}-2 \mathrm{CO}\right), 190\left(37 ; M^{+}-3 \mathrm{CO}\right), 160(17), 134\left(15 ; 1^{+}\right), 105(14), 91(21), 84$ (26), 56 (100\%; Fe $)$. IR spectrum: $\nu(\mathrm{CO}) 2060\left(\mathrm{~A}^{\prime}(\mathrm{a})\right), 1983\left(\mathrm{~A}^{\prime}(2)\right), 1971 \mathrm{~cm}^{-1}$ ($\mathrm{A}^{\prime \prime}$) (assigned according to Adams [31]), $v(\mathrm{C}-\mathrm{O}-\mathrm{C}) 851 \mathrm{~cm}^{-1}$. UV spectrum, $\lambda_{\text {max }}$ in $\mathrm{nm}\left(\epsilon\right.$ in $\left.1 \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right): 289$ (2405), 220 (14700).
(b) The reaction of $\mathrm{Fe}_{2}(\mathrm{CO}),(5 \mathrm{~g}, 13.7 \mathrm{mmol})$ and $1(0.85 \mathrm{~g}, 6.3 \mathrm{mmol})$ in n-pentane (250 ml , room temperature, 3 days) yielded after chromatography and fractional crystallisation the complexes II (exo) and III (endo-isomer). Yields 8 and 1%.

III: Pale yellow air stable crystals. M.p. 124-125 ${ }^{\circ}$ C. Anal. Found: C, 52.4S; $\mathrm{H}, 3.79 . \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Fe}$ calcd.: $\mathrm{C}, 52.59 ; \mathrm{H}, 3.67 \%$. Mass spectrum: $274\left(8 ; M^{+}\right)$, 246 (61; $M^{+}-\mathrm{CO}$), 218 ($100 ; M^{+}-2 \mathrm{CO}$), 190 ($11 ; M^{+}-3 \mathrm{CO}$), 164 (99), 91 (62), $56\left(26 \% ; \mathrm{Fe}^{+}\right)$. IR: $\nu(\mathrm{CO}) 2059$ (A'(1)), 1980 (A'(2)), $1968 \mathrm{~cm}^{-1}$ (A"). UV: 287 (2280), 220 (15400).

İradiation (high pressure Hg lamp HPK 125; pyrex vessel) of (16.4 mmol) and $\mathrm{Fe}(\mathrm{CO})_{5}(82 \mathrm{mmol})$ in n-pentane $(200 \mathrm{ml})$ at $-70^{\circ} \mathrm{C}$ resulted mainly in the polymerisation of the ligand. The reaction of I with $\mathrm{Fe}(\mathrm{CO})_{3}(\mathrm{bza})$ [32] was unsuccessful as the diene did not displace benzalacetone (bza) from the complex to any significant extent.
(c) (cod) Ru(CO) ${ }_{3}[11](0.55 \mathrm{~g}, 1.87 \mathrm{mmol} ; \operatorname{cod}=1,5$-cyclooctadiene) and I $(0.5 \mathrm{~g}, 3.7 \mathrm{mmol})$ were heated under reflux in benzene $(250 \mathrm{ml})$ for 15 h . After filtration and removal of solvent, the residue was taken up in diethyl ether and
chromatographed on a $40 \times 2 \mathrm{~cm}$ column packed with Florisil using n-hexane/ ether (10/1) as eluent. The first fraction of yellow eluate contained a small amount of an undentified product and the second fraction yielded complex IV after recrystallisation from n-pentane at $-25^{\circ} \mathrm{C}(0.18 \mathrm{~g}, 0.56 \mathrm{mmol})$. Yield 15%.

IV : Pale yellow crystals. M.p. $105-106^{\circ} \mathrm{C}$. Anal. Found: C, 45.18 ; H, 3.19. $\mathrm{C}_{1}=\mathrm{H}_{1}, \mathrm{O}, \mathrm{Ru}$ calcd. $\mathrm{C}, 45.14: \mathrm{H}, 3.15 \%$. Mass spectrum (peaks corresponding to $\left.{ }^{: N} \mathrm{Ru}\right): 320\left(7 ; \mathrm{M}^{+}\right), 292\left(65 ; \mathrm{M}^{+}-\mathrm{CO}\right), 264\left(37 ; M^{+}-2 \mathrm{CO}\right), 236\left(100 ; \mathrm{M}^{+}-\right.$ $3 \mathrm{CO}), 204(78), 102(22 ; \mathrm{Ru})$. IR: $1(\mathrm{CO}) 2076,1995,1982 \mathrm{~cm}^{-1}$. UV: 272 (2706), 240 (sh) (4130), 220 (6500).

The reaction of I with $R u,(C O)$: in reflusing toluene gave a lower yield of complex IV.

Reaction of $I I$ with acids. (a) Gaseous HCl was bubbled for $\overline{5}$ min through a solution of II ($0.8 \underset{s}{ }, 2.92 \mathrm{mmol}$) in diethyl ether (200 ml) at $0^{\circ} \mathrm{C}$. The solution was then flushed with argon, neutralised with aqueous NaHCO_{3} and the product extracted with diethyl ether. The extract was dried over MgSO_{4} and chromatographed on a $40 \times 2 \mathrm{~cm}$ column packed with Florisil. Elution with n-hexane/ ether ($10 / 1$) brought down a single yellow band which yielded comples (0.77 g , 2.48 mmol) after recrystallisation in n-pentane at $-25^{-2} \mathrm{C}$. Yield 85%. When carrying out the same reaction in clichloromethane, extensive decomposition was observed with formation of VI.

V: Pale yellow needles. M.p. $103-104^{\circ} \mathrm{C}$. Anal. Found: C, $46.52 ; \mathrm{H}, 3.47 ; \mathrm{Cl}$, $11.42 . \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{ClO}_{4} \mathrm{Fe}$ calcd.: $\mathrm{C}, 46.41 ; \mathrm{H}, 3.57 ; \mathrm{Cl}, 11.41 \%$. Mass spectrum: 310 ($8: M^{+}$), $282\left(72 ; M^{+}-\mathrm{CO}\right), 254\left(100 ; M^{+}-2 \mathrm{CO}\right), 226\left(62 ; M^{+}-3 \mathrm{CO}\right), 190$ (21), 162 (18), $56\left(45 \% ; \mathrm{Fe}^{+}\right)$. IR: $\nu(\mathrm{CO}) 2063\left(\mathrm{~A}^{\prime}(1)\right), 1987\left(\mathrm{~A}^{\prime}(2)\right), 1972 \mathrm{~cm}^{-1}$ ($A^{\prime \prime}$): $\nu(\mathrm{OH}) 3555 \mathrm{~cm}^{-1}$ (in $\mathrm{CCl}_{\mathrm{i}}$). UV: 304 (1897), 220 (13000).

Elimination of the metal was obtained by oxidation of complex $\mathrm{V}(0.3 \mathrm{~g}$, 0.97 mmol) in acetone (60 ml) with ammonium hexanitratocerate (IV) (1.98 mmol) for 30 min at room temperature. After removal of solvent, the ether extracts yielded ligand VI as a colorless oil. Its characteristics were identical to those reported by Vogel et al. [10b] for exo-2-chloro-5,6-dimethylene-syn-7norbornanol (see Table 2 for its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR parameters in CDCl_{3}).

The ${ }^{1} \mathrm{H}$ NMR spectrum of a solution of II and HCl (molar ratio $1 / 2$) in deuterated ether showed that the formation of V was essentially complete after 15 min at $30 \pm 1^{\circ} \mathrm{C}$. Under the same conditions, the endo isomer III did not react and slowly decomposed with formation of VI and VII [10b]. By contrast, the ruthenium complex IV (exo) reacted rapidly but the formed complex decomposed liberating an organic product whose ${ }^{1} \mathrm{H}$ NMR spectrum was identical to that of VI.

Reaction of II with $D C l$. (b) DCl (ca. 70 mmol) was transferred on a vacuum line into a frozen solution of II (1.8 mmol) in diethyl ether (60 ml) and the solution warmed to $0^{\circ} \mathrm{C}$ for 30 min . After filtration, the solvent and excess DCl were pumped off and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ distilled in. The resulting solution showed an ${ }^{1} \mathrm{H} N M R$ spectrum identical to that of V (Table 2), except for the disappearance of the hydroxyl resonance at 3.3 ppm and the loss of the related coupling constant $J(\mathrm{H}(7), \mathrm{OH})$. The isolated product showed bands at $2063,1987,1972 \mathrm{~cm}^{-1}$ ($\nu(\mathrm{CO})$) and a band at $2640 \mathrm{~cm}^{-1}$ (in CCl_{4}) attributable to $\nu(\mathrm{OD}$); upon standing in air, the band at $2640 \mathrm{~cm}^{-1}$ decreased in intensity and a broad absorption band appeared around $3550 \mathrm{~cm}^{-1}(\nu(\mathrm{OH})$). After recrystallisation from (wet) pentane,
a pale yellow complex was obtained (yield 80%) whose analytical and spectral data were identical to those of V .

Reaction of $I I$ with $\mathrm{HSO}_{3} \mathrm{~F}$. (c) A mixture of $\mathrm{CD}_{2} \mathrm{Cl}_{\text {: }}$ and $\mathrm{SO} \mathrm{S}_{2} \mathrm{ClF}$ (dried over $\left.\mathrm{P}_{-} \mathrm{O}_{10}\right)(1 / 1.5,2 \mathrm{ml})$ was transferred on a vacuum line to a 10 mm NMR tube containing complex II (0.18 g). Pure $\mathrm{SO}_{2} \mathrm{ClF}$ (ca. 1 ml) was then conclensed into the upper part of the NMR tube and $\mathrm{HSO}_{3} \mathrm{~F}$ added under nitrogen ($\left[\mathrm{HSO}_{3} \mathrm{~F}\right]$ / [II] ca. 10/1) in such a manner as to keep it frozen in the upper part of the tube which was then sealed under vacuum. The upper part of the tube was gently warmed keeping the lower part at $-110^{\circ} \mathrm{C}$ in order to allow slow mixing of the two solutions. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the resulting carbocation are described in Table 3.

The carbocation solution was vigorously mixed at $-100^{\circ} \mathrm{C}$ with a saturated solution of NaHCO_{3} in methanol. After removal of the solvent, the residue was extracted with diethyl ether/water and the ether extract washed with aqueous NaHCO_{3}, then water and dried over MgSO_{4}. After removal of solvent, the residue was taken up in diethyl ether and chromatographed on a $40 \times 2 \mathrm{~cm}$ column packed with Florisil. Elution with n-hexane/ether (9/1) brought down one yellow band containing complex X which was recrystallised from n-pentane at $-25^{\circ} \mathrm{C}(0.157 \mathrm{~g}$, yield 78%).

X: Pale yellow crystals; single crystals were obtained by slow evaporation under argon of an n-hexane solution at $0^{\circ} \mathrm{C}$. The crystal used for the X-ray measurements was protected from the air by a sealed glass capillary. M.p. $85-86^{\circ} \mathrm{C}$. Anal. Found: C, 51.16 ; H, 4.61. $\mathrm{C}_{13} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{Fe}$ calcd.: $\mathrm{C}, 51.01 ; \mathrm{H}, 4.61 \%$. MS: $306\left(9 ; M^{+}\right), 278\left(68 ; M^{+}-\mathrm{CO}\right), 250\left(100 ; M^{+}-2 \mathrm{CO}\right), 222\left(48 ; M^{+}-3 \mathrm{CO}\right)$. IR: $\nu(\mathrm{CO}) 2060,1983,1965 \mathrm{~cm}^{-1}$ (in hexane); $\nu(\mathrm{OH}) 3485, \nu\left(\mathrm{OCH}_{3}\right) 1100$ cm^{-1} (in CCl_{4}). UV: 310 (2010).

The organic ligand exo-2-methoxy-5,6-dimethylene-syn-7-norbornanol (XI) was obtained by oxidizing complex $\mathrm{X}(0.3 \mathrm{~g}, 0.98 \mathrm{mmol}$) in acetone (60 ml) with $\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{,}(3.2 \mathrm{mmol})$ for 30 min at room temperature. After removal of solvent, the residue was taken up in ether, washed with water, dried over MgSO_{4} and filtered over Florisil. Distillation of the solvent left XI as a colourless oil (0.145 g). Yield 89%.

XI: Anal. Found: $\mathrm{C}, 71.52 ; \mathrm{H}, 7.81 . \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$ calcd.: $\mathrm{C}, 72.26 ; \mathrm{H}, 8.49 \%$. mass spectrum: $166\left(4 ; M^{+}\right), 148(9), 134(38), 117(10), 106(39), 105(91)$, 91 (100), 79 (32), 77 (31), $65(14), 61(20) . \mathrm{IR}\left(\mathrm{CCl}_{4}\right): \nu(\mathrm{OH}) 3475, \nu\left(\mathrm{OCH}_{3}\right)$ $1083 \mathrm{~cm}^{-1}$.

Oxidation of complex V to a norbornanone-7 complex (VIII). A solution of $\mathrm{V}(0.8 \mathrm{~g}, 2.57 \mathrm{mmol})$ in dichloromethane (5 ml) was added to a solution of CrO_{3} ($3.28 \mathrm{~g}, 33 \mathrm{mmol}$) and pyridine ($5.2 \mathrm{~g}, 66 \mathrm{mmol}$) in dichloromethane (60 ml) and stirred for 9 days at room temperature. After removal of solvent, the residue was extracted with ether. The combined extracts were filtered, washed with $5 \% \mathrm{HCl}$, aqueous NaHCO_{3}, then water, dried over MgSO_{4} and evaporated to dryness. The oily residue was chromatographed on silica gel with n-hexane/ether (20/1) as eluent. The first ycllow band yielded the expected complex VIII after recrystallisation from n-pentane at $-25^{\circ} \mathrm{C}(0.044 \mathrm{~g}$, yield 5.5%.

VIII: yellow air stable crystals. M.p. $74-76^{\circ} \mathrm{C}$. Anal. Found: C, 47.67 ; H, $2.99 ; \mathrm{Cl}, 11.20 . \mathrm{C}_{12} \mathrm{H}_{9} \mathrm{ClO}_{4} \mathrm{Fe}$ calcd. $: \mathrm{C}, 46.72 ; \mathrm{H}, 2.94 ; \mathrm{Cl}, 11.49 \%$. Mass spectrum: $308\left(5 ; M^{+}\right), 280\left(58 ; M^{+}-\mathrm{CO}\right), 252\left(91 ; M^{+}-2 \mathrm{CO}\right), 224\left(27 ; M^{+}-3\right.$
$\mathrm{CO}), 1 \mathrm{SS}(91), 56\left(100 ; \mathrm{Fe}^{+}\right) . \mathrm{IR}: \nu(\mathrm{CO}) 2059,1985,1970 \mathrm{~cm}^{-1} ; \nu(\mathrm{C}=\mathrm{O}) 1800$ cm^{-1}. UV: 273 (4250), 220 (10600).

Acknowledgements

The authors wish to thank the Swiss National Science Foundation (grants 2.037-0.78 and 2.891-0.77) for financial support. We are also grateful to Dr. J. Renaud and Mr. Serra for their valuable collaboration in this work.

References

1 A.J. Birch and I.D. Jenkins. in H. Alper (Ed.). Transition Metal Organometallics in Organic Synthesis. Academic Press, New York, 1976, vol. 1, p. 1-82; G. Deganello, P. Uguagliati, L. Calligaro. P. Sandrini and F. Zingales, Inorg. Chim. Acta, 13 (1975) 247; If. Olsen and J.P. Sny der, J. Amer. Chem. Soc., 100 (1978) 285: T.H. Whitesides, R.W. Arhart and R.W. Slaven, ibid., 95 (1973) 5792.
2 A.J. Pearson, J. Chem. Soc. Perkin I, (1977) 2069 and ref. therein; M. Franck-Neumann, F. Brion and D. Martina, Tetrahedron Lett., (1978) 5033: M. Frank-Neumann, D. Martina and F. Brion, Angew. Cnem., 90 (1978) 736: B.F.G. Johnson. J. Lewis, D.G. Parker, P.R. Raithby and G.M. Sheldrick, J. Organometal. Chem., 150 (1978) 115; 7 . Goldschmidt and S. Antebi, Tetrahedron Letl., (1978) 271; A. Salzer and W. von Philipsborn, J. Organometal. Chem. 161 (1978) 39; F.A. Kaplan and B.W. Roberts, J. Amer. Chem. Soc., 99 (1977) 513, 518; G.D. Andretti, G. Bocelli and P. Sgarabotto, J. Organometal. Chem.. 150 (1978) 85: R. Aumann and J. Knecht, Chem. Ber., 111 (1978) 3429, 3927.
3 A.A. Pinkerton, P.A. Carrupt, P. Vogel, T. Boschi, Nguyen Hai Thuy and R. Roulet, Inorg. Chim. Acta, $28(1978) 123$.
4 (a) E.O. Fischer and R.D. Fischer, Angew. Chem., 72 (1960) 919 ; (b) D. Seyferth, J.S. Merola and C.S. Eschbach. J. Amer. Chem. Soc., 100 (1978) 4124 and ref. therein; (c) P.A. Dobosh, D.G. Gresham, D.J. Kowalski, C.P. Lillya and E.S. Magyar, Inorg. Chem., 17 (1978) 1775; (d) P. McArdle and H. Sherlock, J. Chem. Soc. Dalton, (1978) 1678: (e) D.H. Gibson and T-S. Ong, J. Organometal. Chem.. 155 (1978) 221 and ref. therein.
5 R.S. Bly, R.A. Mateer, K-K. Tse and R.L. Veazey, J. Org. Chem.. 38 (1973) 1518.
6 R.S. Bly and R.C. Strickland, J. Amer. Chem. Soc., 92 (1970) 7459.
7 R.S. Bly and T.L. Maier, J. Org. Chem., 43 (1978) 614.
8 M. Elian and R. Hoffmann, Inorg. Chem.. 14 (1975) 1058: A. Pettit, G. Emerson and J. Mahler, J. Chem. Educ.. 40 (1963) 175 and ref. therein.
9 (a) D.F. Hunt, C.P. Lillya and M.D. Rausch, J. Amer. Chem. Soc., 90 (1968) 2561; (b) H.D. Murdoch and E. Weiss. Helv. Chim. Acta, 45 (1962) 1156; 46 (1963) 1588.
10 (a) V. Gergely, Z. Akhavin and P. Vogel, Hevv. Chim. Acta. 58 (1975) 871: (b) A. Chollet and F. Vogel. ibid.. 61 (1978) 732.
11 A.J. Deeming, S.S. Ullah, A.J.D. Domingos, B.F.G. Johnson and J. Lewis, J. Chem. Soc. Dalton, (1974) 2093.

12 U. Steiner, H-J. Hansen. K. Bachmann and W. v. Philipsborn, Helv. Chim. Acta, 60 (1977) 643.
13 A.A. Pinkerton, G. Chapuis, P. Vogel, U. Hänisch, Ph. Narbel, T. Boschi and R. Roulet, Inorg. Chim. Acta. (1979) in press.
14 M. Brookhart, T.H. Whitesides and J.M. Crockett. Inorg. Chem., 15 (1976) 1550 and ref. therein; G.A. Olah, G. Liang and H. Yu, J. Org. Chem.. 41 (1976) 2227.
15 R. Rateliffe and R. Rodehorst, J. Org. Chem., 35 (1970) 4000.
16 E. Lippmaa, T. Pehk and J. Paasivirta, Org. Magn. Reson., 5 (1973) 277; P. Vogel, R. Delseth and D. Quarroz, Helv. Chim. Acta, 58 (1975) 508.
17 K.G.R. Pachler, J. Magn. Reson., 7 (1972) 442; G. Jikeli, W. Herrig and H. Günther, J. Amer. Chem. Soc., 96 (1974) 323; E.W. Hagaman, Org. Magn. Reson., 8 (1976) 389.
18 A. Bondi. J. Phys. Chem.. 68 (1964) 441.
19 K.B. Becker and C.A. Grob, in S. Patai (Ed.), The Chemistry of Double-bonded Functional Groups, Suppl. A, part 2, Wiley, New York, 1977, p. 653 and ref. therein: C.A. Grob, Angew. Chem., 81 (1969) 543.

20 J. Meinwald, S.S. Labana, L.L. Labana and G.H. Wahl Jr.. Tetrahedron Lett., (1965) 1789; J.E. Franz, M. Dietrich and A. Henshall, Chem. Ind., (1966) 1177; B.C. Baumann, M. Rey, J. Markert, H. Prinzbach and A.S. Dreiding, Helv. Chim. Acta, 54 (1971) 1589; Y. Bessiëre-Chrētien and C. Grison, J. Chem. Soc. Chem. Commun., (1973) 549: A. Padwa and W. Koehn, J. Org. Chem., 38 (1973) 4007.

21 J.M. Stewart, F.A. Kundell and J.C. Baldwin, X-ray 72, version of June 1972, Technical Report TR-192 of the Computing Science Center, University of Maryland (as modified by D. Schwarzenbach).

22 D.T. Cromer and J.B. Mann, Acta Cryst. A, 24 (1968) 321.
23 R.F. Stewart, E.R. Davidson and W.T. Simpson, J. Phys. Chem.. 42 (1965) 3175 .
24 D.T. Cromer, Acta Cryst.. 18 (1965) 17.
25 (a) H. Blessing. P. Coppens and P. Becker, J. Appl. Cryst., 7 (1972) 488 ; (b) D. Schwarzenbach. "TWOTHLEL", a Syntex $P{ }_{1}{ }_{1}$ data collection program including scan profile interpretation.
26 P. Main, G. Germain and M.M. Woolfson. Program for the atomatic solution of erystal structures. 1977.

27 C.K. Johnson, ORNE-3794, Oak Ridge National Laboratory, 1971.
28 A.F. Wells, Structural Inorganic Chemistry, 4th Ed.. Clarendon Press, Oxford, 1975, p. 301.
29 Ph. Narbel, T. Boschi, R. Roulet, P. Vogel, A.A. Pimkerton and D. Schwarzenbach, Inorg. Chim. Acta. (1979) in press: E. Meier. T. Boschi. R. Roulet. P. Vogel, A.A. Pinkerton and D. Schwarzenbach, to be published.
30 D.D. Perrin, W.L.F. Armarego and D.R. Perrin, Purification of Laboratory Chemicals. Pergamon. London, 1966: D.F. Schriver. The Manipulation of Air-Sensitive Compounds. MeGraw-hill. New York, 1969.
31. D.M. Adams, Metal-ligand and Related Vibrations, Arnold, London. 1967.

32 J.A.S. Howell, B.F.G. Johnson, P.L. Josty and J. Lewis. J. Organometal. Chem., 39 (1972) 329.
33 D. Quarroz, J.M. Sonney, A. Chollet. A. Florey and P. Vogel, Org. Magn. Reson., 11 (1977) 611.

[^0]: * Present address: Facoltá di Chimica Industriale, University of Venice (Italy).
 ** Authors to whom correspondence should be addressed.

[^1]: * Lists of observed and calculated structure factors are available on request.

[^2]: ${ }^{a}$ The temperature factor has the form $e^{-\gamma} T^{\prime}$ where $l^{\prime}=2 \pi^{2}{ }^{2} h_{i} h_{j} U_{i j} a_{i}{ }^{*} a_{j}^{*}$ for anisotropic atoms and $T=8 \pi^{2} U \sin ^{2} \theta / \lambda^{2}$ for isotropic atoms.

[^3]: a^{m} and m^{\prime} are the midpoints of the $C(2)-C(9)$ and $C(3)-C(8)$ bonds, respectively. b^{b} A and B are the two crystallographically nonequivalent molecules. ${ }^{c}$ Plane VI is defined by atoms $\mathbf{C (1) , C (8)}$ and $\mathbf{C}(5)$.

